Sunday, June 2, 2024

Translation of neurotechnologies - Nature.com - Translation

Abstract

Neurotechnologies combine engineering methods and neuroscientific knowledge to design devices that interface the brain with the outside world. Since the early 2000s, inspiring and encouraging neurotechnology examples have been the subject of high-profile scientific articles and made headlines in popular media. However, although neurotechnologies have the potential to improve people’s lives in ways that cannot be achieved by other solutions such as pharmaceuticals, only a few of them have established themselves as clinical solutions. In this Review, we provide a systematic, state-of-the-art assessment of the opportunities and shortcomings of neurotechnology’s engineering and scientific components, and highlight the requirements to overcome translational barriers. Finally, we present a comprehensive framework to aid the clinical and commercial translation of neurotechnologies.

Key points

  • Neurotechnologies provide new diagnostic and treatment solutions in ways that cannot be achieved by other strategies such as pharmaceuticals, therefore potentially addressing the unmet needs of a large number of patients.

  • Despite important scientific and technical breakthroughs, as well as impressive demonstrations, only a few neurotechnologies have firmly established themselves as clinical solutions.

  • Developing successful neurotechnologies requires addressing technical, clinical and commercial requirements to overcome translational barriers.

  • Rigorously assessing and validating potential benefits, incorporating and advancing neuroscientific knowledge, optimizing technology innovation, and focusing on the user and on the right problem can assist the development of new solutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline.
Fig. 2: Hardware interactions with the brain at different scales, and corresponding hardware.
Fig. 3: Benefit, costs, market penetration and patient benefit.
Fig. 4: Neurotechnology platforms.

Similar content being viewed by others

Recent advances in neurotechnologies with broad potential for neuroscience research

Navigating the FDA regulatory landscape

Precision electronic medicine in the brain

References

  1. Wolpaw, J. & Wolpaw, E. (eds.) Brain–Computer Interfaces: Principles and Practice (Oxford Univ. Press, 2012).

  2. Stieglitz, T. Of man and mice: translational research in neurotechnology. Neuron 105, 12–15 (2020).

    Article  Google Scholar 

  3. Borton, D. A., Dawes, H. E., Worrell, G. A., Starr, P. A. & Denison, T. J. Developing collaborative platforms to advance neurotechnology and its translation. Neuron 108, 286–301 (2020).

    Article  Google Scholar 

  4. Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. Drug discovery: a jump-start for electroceuticals. Nature 496, 159–161 (2013).

    Article  Google Scholar 

  5. Mountcastle, V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).

    Article  Google Scholar 

  6. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106 (1962).

    Article  Google Scholar 

  7. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    Article  Google Scholar 

  8. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  Google Scholar 

  9. Jones, K. E., Campbell, P. K. & Normann, R. A. A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20, 423–437 (1992).

    Article  Google Scholar 

  10. Shain, W. et al. Controlling cellular reactive responses around neural prosthetic devices using peripheral and local intervention strategies. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 186–188 (2003).

    Article  Google Scholar 

  11. Ritaccio, A. L., Brunner, P. & Schalk, G. Electrical stimulation mapping of the brain: basic principles and emerging alternatives. J. Clin. Neurophysiol. 35, 86 (2018).

    Article  Google Scholar 

  12. Kubanek, J., Miller, K. J., Ojemann, J. G., Wolpaw, J. R. & Schalk, G. Decoding flexion of individual fingers using electrocorticographic signals in humans. J. Neural Eng. 6, 066001 (2009).

    Article  Google Scholar 

  13. Miller, K. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).

    Article  Google Scholar 

  14. Schalk, G. et al. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 4, 264–275 (2007).

    Article  Google Scholar 

  15. Berger, H. Über das Electroenkephalogramm des Menschen. Arch. Psychiat. Nervenkr. 87, 527–570 (1929).

    Article  Google Scholar 

  16. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  Google Scholar 

  17. Haegens, S., Nácher, V., Luna, R., Romo, R. & Jensen, O. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc. Natl Acad. Sci. USA 108, 19377–19382 (2011).

    Article  Google Scholar 

  18. Coon, W. G. et al. Oscillatory phase modulates the timing of neuronal activations and resulting behavior. NeuroImage 133, 294–301 (2016).

    Article  Google Scholar 

  19. Moheimanian, L., Paraskevopoulou, S. E., Adamek, M., Schalk, G. & Brunner, P. Modulation in cortical excitability disrupts information transfer in perceptual-level stimulus processing. NeuroImage 243, 118498 (2021).

    Article  Google Scholar 

  20. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

    Article  MathSciNet  Google Scholar 

  21. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Article  Google Scholar 

  22. Ray, S. & Maunsell, J. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

    Article  Google Scholar 

  23. Whittingstall, K. & Logothetis, N. K. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64, 281–289 (2009).

    Article  Google Scholar 

  24. Gardner, A. B., Worrell, G. A., Marsh, E., Dlugos, D. & Litt, B. Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin. Neurophysiol. 118, 1134–1143 (2007).

    Article  Google Scholar 

  25. Crowther, L. J. et al. A quantitative method for evaluating cortical responses to electrical stimulation. J. Neurosci. Methods 311, 67–75 (2019).

    Article  Google Scholar 

  26. Miller, K. J. et al. Canonical response parameterization: quantifying the structure of responses to single-pulse intracranial electrical brain stimulation. PLoS Comput. Biol. 19(5), e1011105 (2023).

    Article  Google Scholar 

  27. Butson, C. R. & McIntyre, C. C. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimul. 1, 7–15 (2008).

    Article  Google Scholar 

  28. Blakely, T., Miller, K. J., Zanos, S. P., Rao, R. P. & Ojemann, J. G. Robust, long-term control of an electrocorticographic brain–computer interface with fixed parameters. Neurosurg. Focus. 27, E13 (2009).

    Article  Google Scholar 

  29. Chao, Z. C., Nagasaka, Y. & Fujii, N. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front. Neuroeng. https://ift.tt/9pmb2Dk (2010).

  30. Schalk, G. Can electrocorticography (ECoG) support robust and powerful brain-computer interfaces? Front. Neuroeng. 3, 9 (2010).

    Google Scholar 

  31. Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G. & Moran, D. W. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63–71 (2004).

    Article  Google Scholar 

  32. Schalk, G. et al. Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75 (2008).

    Article  Google Scholar 

  33. Vansteensel, M. J. et al. Fully implanted brain–computer interface in a locked-in patient with ALS. N. Engl. J. Med. 375, 2060–2066 (2016).

    Article  Google Scholar 

  34. Herff, C. et al. Brain-to-text: decoding spoken phrases from phone representations in the brain. Front. Neurosci. 9, 217 (2015).

    Article  Google Scholar 

  35. Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227 (2021).

    Article  Google Scholar 

  36. Heck, C. N. et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS system pivotal trial. Epilepsia 55, 432–441 (2014).

    Article  Google Scholar 

  37. Edwardson, M., Lucas, T., Carey, J. & Fetz, E. New modalities of brain stimulation for stroke rehabilitation. Exp. Brain Res. 224, 335–358 (2013).

    Article  Google Scholar 

  38. de Hemptinne, C. et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc. Natl Acad. Sci. USA 110, 4780–4785 (2013).

    Article  Google Scholar 

  39. Opri, E. et al. Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Sci. Transl. Med. 12, eaay7680 (2020).

    Article  Google Scholar 

  40. Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).

    Article  Google Scholar 

  41. Kubanek, J. Neuromodulation with transcranial focused ultrasound. Neurosurg. Focus 44, E14 (2018).

    Article  Google Scholar 

  42. Philip, N. S. & Arulpragasam, A. R. Reaching for the unreachable: low intensity focused ultrasound for non-invasive deep brain stimulation. Neuropsychopharmacology 48, 251–252 (2022).

    Article  Google Scholar 

  43. Mirzakhalili, E., Barra, B., Capogrosso, M. & Lempka, S. F. Biophysics of temporal interference stimulation. Cell Syst. 11, 557–572 (2020).

    Article  Google Scholar 

  44. Acerbo, E. et al. Focal non-invasive deep-brain stimulation with temporal interference for the suppression of epileptic biomarkers. Front. Neurosci. 16, 945221 (2022).

    Article  Google Scholar 

  45. Macé, E. et al. Functional ultrasound imaging of the brain. Nat. Methods 8, 662–664 (2011).

    Article  Google Scholar 

  46. Li, C.-L. The inhibitory effect of stimulation of a thalamic nucleus on neuronal activity in the motor cortex. J. Physiol. 133, 40–53 (1956).

    Article  Google Scholar 

  47. Pfurtscheller, G. et al. The hybrid BCI. Front. Neurosci. https://ift.tt/DZsE8wh (2010).

    Article  Google Scholar 

  48. Müller-Putz, G. et al. Towards noninvasive hybrid brain–computer interfaces: framework, practice, clinical application, and beyond. Proc. IEEE 103, 926–943 (2015).

    Article  Google Scholar 

  49. Ross, S. D. et al. Systematic review of the literature regarding the diagnosis of sleep apnea. Evid. Rep. Technol. Assess. https://ift.tt/AbiDEHB (1998).

  50. Smith, S. J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76, ii2–ii7 (2005).

    Article  Google Scholar 

  51. Blackhart, G. C., Minnix, J. A. & Kline, J. P. Can EEG asymmetry patterns predict future development of anxiety and depression? A preliminary study. Biol. Psychol. 72, 46–50 (2006).

    Article  Google Scholar 

  52. Thibodeau, R., Jorgensen, R. S. & Kim, S. Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J. Abnorm. Psychol. 115, 715 (2006).

    Article  Google Scholar 

  53. Mohan, Y., Chee, S. S., Xin, D. K. P. & Foong, L. P. Artificial neural network for classification of depressive and normal in EEG. In 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 286–290 (IEEE, 2016).

  54. de Aguiar Neto, F. S. & Rosa, J. L. G. Depression biomarkers using non-invasive EEG: a review. Neurosci. Biobehav. Rev. 105, 83–93 (2019).

    Article  Google Scholar 

  55. Jiang, C., Li, Y., Tang, Y. & Guan, C. Enhancing EEG-based classification of depression patients using spatial information. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 566–575 (2021).

    Article  Google Scholar 

  56. Nuwer, M. R., Hovda, D. A., Schrader, L. M. & Vespa, P. M. Routine and quantitative EEG in mild traumatic brain injury. Clin. Neurophysiol. 116, 2001–2025 (2005).

    Article  Google Scholar 

  57. Doan, D. N. T. et al. Predicting dementia with prefrontal electroencephalography and event-related potential. Front. Aging Neurosci. 13, 659817 (2021).

    Article  Google Scholar 

  58. Farwell, L. A. & Donchin, E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988).

    Article  Google Scholar 

  59. Sutter, E. E. The brain response interface: communication through visually-induced electrical brain responses. J. Microcomput. Appl. 15, 31–45 (1992).

    Article  Google Scholar 

  60. Pfurtscheller, G., Flotzinger, D. & Kalcher, J. Brain–computer interface — a new communication device for handicapped persons. J. Microcomput. Appl. 16, 293–299 (1993).

    Article  Google Scholar 

  61. Birbaumer, N. et al. A spelling device for the paralysed. Nature 398, 297–298 (1999).

    Article  Google Scholar 

  62. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G. & Vaughan, T. M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002).

    Article  Google Scholar 

  63. Kübler, A. et al. Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface. Neurology 64, 1775–1777 (2005).

    Article  Google Scholar 

  64. Sellers, E. W. & Donchin, E. A P300-based brain–computer interface: initial tests by ALS patients. Clin. Neurophysiol. 117, 538–548 (2006).

    Article  Google Scholar 

  65. Müller-Putz, G. R., Scherer, R., Brauneis, C. & Pfurtscheller, G. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J. Neural Eng. 2, 123 (2005).

    Article  Google Scholar 

  66. Wolpaw, J. R. in Handbook of Clinical Neurology Vol. 110, 67–74 (Elsevier, 2013).

  67. Chen, X. et al. High-speed spelling with a noninvasive brain–computer interface. Proc. Natl Acad. Sci. USA 112, E6058–E6067 (2015).

    Article  Google Scholar 

  68. Soekadar, S. et al. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1, eaag3296 (2016).

    Article  Google Scholar 

  69. Chaudhary, U. et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nat. Commun. 13, 1236 (2022).

    Article  Google Scholar 

  70. Ang, K. K. et al. Brain–computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front. Neuroeng. 7, 30 (2014).

    Article  Google Scholar 

  71. Soekadar, S. R., Birbaumer, N., Slutzky, M. W. & Cohen, L. G. Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015).

    Article  Google Scholar 

  72. Bundy, D. T. et al. Contralesional brain–computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke 48, 1908–1915 (2017).

    Article  Google Scholar 

  73. Cervera, M. A. et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5, 651–663 (2018).

    Article  Google Scholar 

  74. Musso, M. et al. Aphasia recovery by language training using a brain–computer interface: a proof-of-concept study. Brain Commun. 4, fcac008 (2022).

    Article  Google Scholar 

  75. Donati, A. R. et al. Long-term training with a brain–machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci. Rep. 6, 30383 (2016).

    Article  Google Scholar 

  76. Sonmez, A. I. et al. Accelerated TMS for depression: a systematic review and meta-analysis. Psychiatry Res. 273, 770–781 (2019).

    Article  Google Scholar 

  77. Trevizol, A. P. et al. Transcranial magnetic stimulation for obsessive-compulsive disorder: an updated systematic review and meta-analysis. J. ECT 32, 262–266 (2016).

    Article  Google Scholar 

  78. Cole, J. C., Bernacki, C. G., Helmer, A., Pinninti, N. & O’reardon, J. P. Efficacy of transcranial magnetic stimulation (TMS) in the treatment of schizophrenia: a review of the literature to date. Innov. Clin. Neurosci. 12, 12 (2015).

    Google Scholar 

  79. Cirillo, G. et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 10, 1–18 (2017).

    Article  Google Scholar 

  80. Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D. S. & Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol. 9, 413–424 (2010).

    Article  Google Scholar 

  81. Adaikkan, C. et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron 102, 929–943 (2019).

    Article  Google Scholar 

  82. Soula, M. et al. Forty-hertz light stimulation does not entrain native gamma oscillations in Alzheimer’s disease model mice. Nat. Neurosci. 26, 570–578 (2023).

    Article  Google Scholar 

  83. Nasr, K. et al. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Prog. Neurobiol. 226, 102311 (2022).

    Article  Google Scholar 

  84. Wolpaw, J. R. & Tennissen, A. M. Activity-dependent spinal cord plasticity in health and disease. Annu. Rev. Neurosci. 24, 807–843 (2001).

    Article  Google Scholar 

  85. Jackson, A., Mavoori, J. & Fetz, E. E. Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444, 56–60 (2006).

    Article  Google Scholar 

  86. Haslacher, D. et al. In vivo phase-dependent enhancement and suppression of human brain oscillations by transcranial alternating current stimulation (tACS). NeuroImage 275, 120187 (2023).

    Article  Google Scholar 

  87. Ngo, H.-V. V., Martinetz, T., Born, J. & Mölle, M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78, 545–553 (2013).

    Article  Google Scholar 

  88. Santostasi, G. et al. Phase-locked loop for precisely timed acoustic stimulation during sleep. J. Neurosci. Methods 259, 101–114 (2016).

    Article  Google Scholar 

  89. Garcia-Molina, G. et al. Closed-loop system to enhance slow-wave activity. J. Neural Eng. 15, 066018 (2018).

    Article  Google Scholar 

  90. Lustenberger, C. et al. Auditory deep sleep stimulation in older adults at home: a randomized crossover trial. Commun. Med. 2, 30 (2022).

    Article  Google Scholar 

  91. Ehrlich, S. K., Agres, K. R., Guan, C. & Cheng, G. A closed-loop, music-based brain–computer interface for emotion mediation. PLoS ONE 14, e0213516 (2019).

    Article  Google Scholar 

  92. Clausen, J. et al. Help, hope, and hype: ethical dimensions of neuroprosthetics. Science 356, 1338–1339 (2017).

    Article  Google Scholar 

  93. Soekadar, S., Chandler, J., Ienca, M. & Bublitz, C. On the verge of the hybrid mind. Morals Mach. 1, 30–43 (2021).

    Article  Google Scholar 

  94. Fetz, E. E. & Finocchio, D. V. Operant conditioning of specific patterns of neural and muscular activity. Science 174, 431–435 (1971).

    Article  Google Scholar 

  95. Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N. & Wolpaw, J. BCI2000: a general-purpose brain–computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004).

    Article  Google Scholar 

  96. Schalk, G. & Mellinger, J. A Practical Guide to Brain–Computer Interfacing with BCI2000 (Springer, 2010).

  97. Renard, Y. et al. OpenViBE: an open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments. Presence 19, 35–53 (2010).

    Article  Google Scholar 

  98. Brunner, P. & Schalk, G. in Brain–Computer Interfaces Handbook: Technological and Theoretical Advances (eds Nam, C. S. et al.) 323–336 (CRC, 2018).

  99. Schalk, G. et al. Toward a fully implantable ecosystem for adaptive neuromodulation in humans: preliminary experience with the CorTec BrainInterchange device in a canine model. Front. Neurosci. 16, 932782 (2022).

    Article  Google Scholar 

  100. Dornhege, G. et al. Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 53, 2274–2281 (2006).

    Article  Google Scholar 

  101. McFarland, D., Anderson, C., Muller, K.-R., Schlogl, A. & Krusienski, D. BCI meeting 2005 — workshop on BCI signal processing: feature extraction and translation. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 135–138 (2006).

    Article  Google Scholar 

  102. Gilja, V. et al. Clinical translation of a high-performance neural prosthesis. Nat. Med. 21, 1142–1145 (2015).

    Article  Google Scholar 

  103. Ang, K. K., Chin, Z. Y., Zhang, H. & Guan, C. Filter bank common spatial pattern (FBCSP) in brain–computer interface. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) 2390–2397 (IEEE, 2008).

  104. Lotte, F. & Guan, C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58, 355–362 (2011).

    Article  Google Scholar 

  105. Wei, Q., Wang, Y., Gao, X. & Gao, S. Amplitude and phase coupling measures for feature extraction in an EEG-based brain–computer interface. J. Neural Eng. 4, 120 (2007).

    Article  Google Scholar 

  106. Lotte, F. et al. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng. 15, 031005 (2018).

    Article  Google Scholar 

  107. Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).

    Article  Google Scholar 

  108. Schalk, G. A general framework for dynamic cortical function: the function-through-biased-oscillations (FBO) hypothesis. Front. Hum. Neurosci. 9, 352 (2015).

    Article  Google Scholar 

  109. Krusienski, D. J., Schalk, G., McFarland, D. J. & Wolpaw, J. R. A mu-rhythm matched filter for continuous control of a brain–computer interface. IEEE Trans. Biomed. Eng. 54, 273–280 (2007).

    Article  Google Scholar 

  110. Schalk, G., Marple, J., Knight, R. T. & Coon, W. G. Instantaneous voltage as an alternative to power- and phase-based interpretation of oscillatory brain activity. Neuroimage 157, 545–554 (2017).

    Article  Google Scholar 

  111. Homer, M., Nurmikko, A., Donoghue, J. & Hochberg, L. Sensors and decoding for intracortical brain computer interfaces. Annu. Rev. Biomed. Eng. 15, 383–405 (2013).

    Article  Google Scholar 

  112. Zhang, K., Robinson, N., Lee, S.-W. & Guan, C. Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network. Neural Netw. 136, 1–10 (2021).

    Article  Google Scholar 

  113. Kwon, O.-Y., Lee, M.-H., Guan, C. & Lee, S.-W. Subject-independent brain–computer interfaces based on deep convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31, 3839–3852 (2020).

    Article  Google Scholar 

  114. Delorme, A., Sejnowski, T. & Makeig, S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34, 1443–1449 (2007).

    Article  Google Scholar 

  115. Islam, M. K., Rastegarnia, A. & Yang, Z. Methods for artifact detection and removal from scalp EEG: a review. Neurophysiol. Clin. 46, 287–305 (2016).

    Article  Google Scholar 

  116. Chang, C.-Y., Hsu, S.-H., Pion-Tonachini, L. & Jung, T.-P. Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Trans. Biomed. Eng. 67, 1114–1121 (2020).

    Article  Google Scholar 

  117. Winkler, I., Haufe, S. & Tangermann, M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 7, 1–15 (2011).

    Article  Google Scholar 

  118. Mullen, T. R. et al. Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 62, 2553–2567 (2015).

    Article  Google Scholar 

  119. Blum, S., Jacobsen, N. S., Bleichner, M. G. & Debener, S. A Riemannian modification of artifact subspace reconstruction for EEG artifact handling. Front. Hum. Neurosci. 13, 141 (2019).

    Article  Google Scholar 

  120. Schreyögg, J., Bäumler, M. & Busse, R. Balancing adoption and affordability of medical devices in Europe. Health Policy 92, 218–224 (2009).

    Article  Google Scholar 

  121. Hall, B. H. & Khan, B. Adoption of New Technology. https://ift.tt/eQBitLx (2003).

  122. Kilgore, K. L. et al. An implanted upper-extremity neuroprosthesis using myoelectric control. J. Hand Surg. 33, 539–550 (2008).

    Article  Google Scholar 

  123. Haugland, M. et al. A preliminary non-randomised study to evaluate the safety and performance of the ActiGait implanted drop-foot stimulator in established hemiplegia. In Getting FES into Clinical Practice, Proc. IFESS-FESnet 2004 (eds Wood, D. & Taylor, J.) 153–155 (2004).

  124. Luo, Y. H.-L. & Da Cruz, L. The Argus® II retinal prosthesis system. Prog. Retin. Eye Res. 50, 89–107 (2016).

    Article  Google Scholar 

  125. Bergstein, B. Paralyzed again. MIT Technol. Rev. (9 April 2015).

  126. Strickland, E. & Harris, M. What happens when a bionic body part becomes obsolete? Blind people with Second Sight’s retinal implants found out. IEEE Spectr. 59, 24–31 (2022).

    Article  Google Scholar 

  127. Drew, L. Abandoned: the human cost of neurotechnology failure. Nature https://ift.tt/AIliGXM (2022).

  128. Kramer, D. B., Xu, S. & Kesselheim, A. S. How does medical device regulation perform in the United States and the European Union? A systematic review. PLoS Med. 9, e1001276 (2012).

    Article  Google Scholar 

  129. Shiroiwa, T. et al. International survey on willingness-to-pay (WTP) for one additional QALY gained: what is the threshold of cost effectiveness? Heal. Econ. 19, 422–437 (2010).

    Article  Google Scholar 

  130. Benabid, A.-L., Pollak, P., Louveau, A., Henry, S. & De Rougemont, J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Stereotact. Funct. Neurosurg. 50, 344–346 (1987).

    Article  Google Scholar 

  131. Kestenbaum M, L. E. & Ford, B. Estimating the proportion of essential tremor and Parkinson’s disease patients undergoing deep brain stimulation surgery: five-year data from Columbia University Medical Center (2009–2014). Mov. Disord. Clin. Pract. 4, 384–378 (2015).

    Article  Google Scholar 

  132. Morgante, L. et al. How many Parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic nucleus? Results of a questionnaire. Park. Relat. Disord. 13, 528–531 (2007).

    Article  Google Scholar 

  133. Nassiri, A. M., Sorkin, D. L. & Carlson, M. L. Current estimates of cochlear implant utilization in the United States. Otol. Neurotol. 43, e558–e562 (2022).

    Article  Google Scholar 

  134. Smilowska, K. et al. Cost-effectiveness of device-aided therapies in Parkinson’s disease: a structured review. J. Park. Dis. 11, 475–489 (2021).

    Google Scholar 

  135. Cheng, L.-J., Soon, S. S., Wu, D. B.-C., Ju, H. & Ng, K. Cost-effectiveness analysis of bilateral cochlear implants for children with severe-to-profound sensorineural hearing loss in both ears in Singapore. PLoS ONE 14, e0220439 (2019).

    Article  Google Scholar 

  136. Montes, F. et al. Cochlear implants versus hearing aids in a middle-income country: costs, productivity, and quality of life. Otol. Neurotol. 38, e26–e33 (2017).

    Article  Google Scholar 

  137. Qiu, J. et al. Cost-effectiveness of pediatric cochlear implantation in rural China. Otol. Neurotol. 38, e75 (2017).

    Article  Google Scholar 

  138. Tolstoy, L. Anna Karenina (The Russian Messenger, 1878).

  139. Diamond, J. Guns, Germs, and Steel: The Fates of Human Societies 20th anniversary edn (W. W. Norton & Company, 2017).

  140. Brooks, F. P. & Bullet, N. S. Essence and accidents of software engineering. IEEE Comput. 20, 10–19 (1987).

    Article  Google Scholar 

  141. Fetz, E. E. Real-time control of a robotic arm by neuronal ensembles. Nat. Neurosci. 2, 583–584 (1999).

    Article  Google Scholar 

  142. Chapin, J. K. Neural prosthetic devices for quadriplegia. Curr. Opin. Neurol. 13, 671–675 (2000).

    Article  Google Scholar 

  143. Nicolelis, M. A. Actions from thoughts. Nature 409, 403–407 (2001).

    Article  Google Scholar 

  144. Donoghue, J. P. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5, 1085–1088 (2002).

    Article  Google Scholar 

  145. Lyle, R. C. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int. J. Rehabil. Res. 4, 483–492 (1981).

    Article  Google Scholar 

  146. Buhmann, C. et al. Adverse events in deep brain stimulation: a retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS ONE 12, e0178984 (2017).

    Article  Google Scholar 

  147. Follett, K. A. et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 362, 2077–2091 (2010).

    Article  Google Scholar 

  148. Figee, M. et al. Deep brain stimulation for depression. Neurotherapeutics 19, 1229–1245 (2022).

    Article  Google Scholar 

  149. Levy, R. M. The need for mechanism-based medicine in neuromodulation. Neuromodulation 15, 273–279 (2012).

    Article  Google Scholar 

  150. Abou-Al-Shaar, H., Brock, A. A., Kundu, B., Englot, D. J. & Rolston, J. D. Increased nationwide use of stereoencephalography for intracranial epilepsy electroencephalography recordings. J. Clin. Neurosci. 53, 132–134 (2018).

    Article  Google Scholar 

  151. Li, G. et al. Optimal referencing for stereo-electroencephalographic (SEEG) recordings. NeuroImage 183, 327–335 (2018).

    Article  Google Scholar 

  152. Coon, W. & Schalk, G. A method to establish the spatiotemporal evolution of task-related cortical activity from electrocorticographic signals in single trials. J. Neurosci. Methods 271, 76–85 (2016).

    Article  Google Scholar 

  153. Morrell, M. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–1304 (2011).

    Article  Google Scholar 

  154. Rouse, A. G. et al. A chronic generalized bi-directional brain–machine interface. J. Neural Eng. 8, 036018 (2011).

    Article  Google Scholar 

  155. Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 39, 1078–1085 (2021).

    Article  Google Scholar 

  156. Stanslaski, S. et al. A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans. Biomed. Circuits Syst. 12, 1230–1245 (2018).

    Article  Google Scholar 

  157. Jimenez-Shahed, J. Device profile of the percept PC deep-brain stimulation system for the treatment of Parkinson’s disease and related disorders. Expert. Rev. Med. Devices 18, 319–332 (2021).

    Article  Google Scholar 

  158. Kohler, F. et al. Closed-loop interaction with the cerebral cortex: a review of wireless implant technology. Brain Comput. Interfaces 4, 146–154 (2017).

    Article  Google Scholar 

  159. Oxley, T. J. et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat. Biotechnol. 34, 320–327 (2016).

    Article  Google Scholar 

  160. Musk, E. et al. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article  Google Scholar 

  161. Peckham, P. H. & Kilgore, K. L. Challenges and opportunities in restoring function after paralysis. IEEE Trans. Biomed. Eng. 60, 602–609 (2013).

    Article  Google Scholar 

  162. Chen, X. Y. & Wolpaw, J. R. Operant conditioning of H-reflex in freely moving rats. J. Neurophysiol. 73, 411–415 (1995).

    Article  Google Scholar 

  163. Thompson, A. K. & Wolpaw, J. R. H-reflex conditioning during locomotion in people with spinal cord injury. J. Physiol. 599, 2453–2469 (2019).

    Article  Google Scholar 

  164. Sebastián-Romagosa, M. et al. Brain computer interface treatment for motor rehabilitation of upper extremity of stroke patients — a feasibility study. Front. Neurosci. 14, 591435 (2020).

    Article  Google Scholar 

  165. Davis, P. A. Effects of acoustic stimuli on the waking human brain. J. Neurophysiol. 2, 494–499 (1939).

    Article  Google Scholar 

  166. Jasper, H. & Penfield, W. Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Arch. für Psychiatr. und Nervenkrankheiten 183, 163–174 (1949).

    Article  Google Scholar 

  167. Gibbs, F. A., Davis, H. & Lennox, W. G. The electroencephalogram in epilepsy and in conditions of impaired consciousness. Am. J. EEG Technol. 8, 59–73 (1968).

    Article  Google Scholar 

  168. Cooper, I. S., Upton, A. & Amin, I. Chronic cerebellar stimulation (CCS) and deep brain stimulation (DBS) in involuntary movement disorders. Appl. Neurophysiol. 45, 209–217 (1982).

    Google Scholar 

  169. Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A. & Mehring, C. Prediction of arm movement trajectories from ECoG-recordings in humans. J. Neurosci. Methods 167, 105–114 (2008).

    Article  Google Scholar 

  170. Horsley, V. & Clarke, R. H. The structure and functions of the cerebellum examined by a new method. Brain 31, 45–124 (1908).

    Article  Google Scholar 

  171. Bailey, P. & Bremer, F. A sensory cortical representation of the vagus nerve: with a note on the effects of low blood pressure on the cortical electrogram. J. Neurophysiol. 1, 405–412 (1938).

    Article  Google Scholar 

  172. Laitinen, L. Placement of electrodes in transcutaneous stimulation for chronic pain. Neurochirurgie 22, 517–526 (1976).

    Google Scholar 

  173. Jöbsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).

    Article  Google Scholar 

  174. Barker, A. T., Jalinous, R. & Freeston, I. L. Non-invasive magnetic stimulation of human motor cortex. Lancet 325, 1106–1107 (1985).

    Article  Google Scholar 

  175. Gavrilov, L., Tsirulnikov, E. & Davies, I. a. I. Application of focused ultrasound for the stimulation of neural structures. Ultrasound Med. Biol. 22, 179–192 (1996).

    Article  Google Scholar 

  176. Maynard, E. M., Nordhausen, C. T. & Normann, R. A. The Utah intracortical electrode array: a recording structure for potential brain–computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102, 228–239 (1997).

    Article  Google Scholar 

  177. Xia, H., Ben-Amar Baranga, A., Hoffman, D. & Romalis, M. Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006).

    Article  Google Scholar 

  178. Delgado, J. M., Bradley, R. J., Johnston, V. S., Weiss, G. & Wallace, J. D. Implantation of Multilead Electrode Assemblies and Radio Stimulation of the Brain in Chimpanzees. Technical Report (Yale Univ. Department of Psychiatry, 1969).

  179. Frost, J. Jr Development of a Prototype Onboard EEG Analysis System. Technical Report CR 108508 (NASA, 1970).

  180. Vidal, J. J. Toward direct brain–computer communication. Annu. Rev. Biophys. Bioeng. 2, 157–180 (1973).

    Article  Google Scholar 

  181. Taylor, D. M., Tillery, S. I. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).

    Article  Google Scholar 

  182. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article  Google Scholar 

  183. Rossi, P. J. et al. Scheduled, intermittent stimulation of the thalamus reduces tics in Tourette syndrome. Park. Relat. Disord. 29, 35–41 (2016).

    Article  Google Scholar 

  184. Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021).

    Article  Google Scholar 

  185. Lorach, H. et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 618, 126–133 (2023).

    Article  Google Scholar 

  186. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  187. Cerletti, U. L’elettroshock. Riv. Sper. Freniat. Med. Leg. Alien. Ment. 64, 209–310 (1940).

    Google Scholar 

  188. Desoyer, I. & Hochmair, E. Implantable eight-channel stimulator for the deaf. In ESSCIRC’77: 3rd European Solid State Circuits Conference, 87–89 (IEEE, 1977).

  189. Clark, G. M., Clark, J. C. & Furness, J. B. The evolving science of cochlear implants. JAMA 310, 1225–1226 (2013).

    Article  Google Scholar 

  190. Pascual-Leone, A., Rubio, B., Pallardó, F. & Catalá, M. D. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348, 233–237 (1996).

    Article  Google Scholar 

  191. Brunner, P. et al. A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav. 15, 278–286 (2009).

    Article  Google Scholar 

  192. Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P. & Andersen, R. A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811 (2002).

    Article  Google Scholar 

  193. Pinotsis, D. A., Fridman, G. & Miller, E. K. Cytoelectric coupling: electric fields sculpt neural activity and ‘tune’ the brain’s infrastructure. Prog. Neurobiol. 226, 102465 (2023).

    Article  Google Scholar 

  194. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  Google Scholar 

  195. Moore, G. A. Crossing the Chasm: Marketing and Selling Disruptive Products to Mainstream Customers 3rd edn (Collins, 2014).

  196. Kremen, V. et al. Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 6, 2500112 (2018).

    Article  Google Scholar 

  197. Gunduz, A. et al. Adding wisdom to ‘smart’ bioelectronic systems: a design framework for physiologic control including practical examples. Bioelectron. Med. 2, 29–41 (2019).

    Article  Google Scholar 

  198. Shirvalkar, P. et al. First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nat. Neurosci. 26, 1090–1099 (2023).

    Article  Google Scholar 

  199. Alagapan, S. et al. Cingulate dynamics track depression recovery with deep brain stimulation. Nature 622, 130–138 (2023).

    Article  Google Scholar 

  200. Skarpaas, T. L., Jarosiewicz, B. & Morrell, M. J. Brain-responsive neurostimulation for epilepsy (RNS® system). Epilepsy Res. 153, 68–70 (2019).

    Article  Google Scholar 

  201. Strollo, P. J. Jr et al. Upper-airway stimulation for obstructive sleep apnea. N. Engl. J. Med. 370, 139–149 (2014).

    Article  Google Scholar 

  202. Ryu, S. I. & Shenoy, K. V. Human cortical prostheses: lost in translation? Neurosurg. Focus 27, E5 (2009).

    Article  Google Scholar 

  203. Oxley, T. J. et al. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J. Neurointerv. Surg. 13, 102–108 (2021).

    Article  Google Scholar 

  204. Levy, R. M. et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded Everest trial. Neurorehabil. Neural Repair. 30, 107–119 (2016).

    Article  Google Scholar 

  205. Ezzyat, Y. et al. Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat. Commun. 9, 365 (2018).

    Article  Google Scholar 

  206. Krauss, J. K. et al. Technology of deep brain stimulation: current status and future directions. Nat. Rev. Neurol. 17, 75–87 (2021).

    Article  Google Scholar 

  207. Kostarelos, K., Vincent, M., Hebert, C. & Garrido, J. A. Graphene in the design and engineering of next-generation neural interfaces. Adv. Mater. 29, 1700909 (2017).

    Article  Google Scholar 

  208. Peckham, P. H. et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch. Phys. Med. Rehabil. 82, 1380–1388 (2001).

    Article  Google Scholar 

  209. van der Aa, H., Alleman, E., Nene, A. & Snoek, G. Sacral anterior root stimulation for bladder control: clinical results. Arch. Physiol. Biochem. 107, 248–256 (1999).

    Article  Google Scholar 

  210. da Cruz, L. et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology 123, 2248–2254 (2016).

    Article  Google Scholar 

  211. Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571 (2013).

    Article  Google Scholar 

  212. Gilbert, F., Ienca, M. & Cook, M. How I became myself after merging with a computer: does human–machine symbiosis raise human rights issues? Brain Stimul. 16, 783–789 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Tianqiao and Chrissy Chen Institute (G.S.), the RIE2020 AME Programmatic Fund in Singapore (A20G8b0102 (C.G.)), the NIH (U01-NS12861 (K.J.M.) and P41-EB018783 (P.B.)), the Royal Academy of Engineering (T.D.), the German Federal Ministry of Research and Education (BMBF, 01DR21025A, 01GP2121B, 03ZU1110DD, 13N16486, 01UX2211 (S.R.S.)), the European Research Council (ERC 759370, 101081905 (S.R.S.)), the Foundation for OCD Research (K.J.M.) and the Minnesota Partnership for Biotechnology and Medical Genomics (K.J.M.). We also thank S. Graepel, J. Reindorp and T. Larsson for their help with illustrations, and H. Shao for assistance with background information.

Author information

Authors and Affiliations

Authors

Contributions

G.S. initiated and project-managed the creation of this Review, wrote several sections, edited the manuscript, and contributed to the generation of all figures. P.B. edited the manuscript. B.Z.A. developed Fig. 1 and edited the manuscript. S.R.S. wrote the section on macroscale aggregates. C.G. wrote the section on signal processing and AI. T.D. provided the initial requirements based on prior analysis, developed Figs. 3 and 4, and jointly wrote the business/regulatory sections. J.R. developed Fig. 3, jointly wrote the business and regulatory sections, and edited the manuscript. K.J.M. developed Fig. 2 and edited the manuscript.

Corresponding author

Correspondence to Gerwin Schalk.

Ethics declarations

Competing interests

G.S. previously consulted for CorTec and currently consults for NeuroXess. T.D. is a director and shareholder at Amber Therapeutics, and consults for CorTec. He has previously consulted for Synchron, Inspire and Galvani. J.R. previously served as CEO for CorTec and is a shareholder at CorTec and Neudio. The other authors report no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Ramses Alcaide and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

All devices had to be explanted: https://ift.tt/aRuKmhB

BRAIN Initiative: https://ift.tt/HOWDs5R

Covered in the popular media: https://ift.tt/f4CuLl9

Early Feasibility Program: https://ift.tt/GIjQtDm

Epiminder: https://epiminder.com

Humanitarian device exemption: https://ift.tt/UrI6Sjq

InBRAIN: the company’s growth did not meet expectations: https://ift.tt/gtsvzQP

Inspire Medical: https://ift.tt/JWuQwoN

Medical Device Regulation: https://eumdr.com

Medtronic acquires Sapiens: https://ift.tt/Gn40Nrg

NeuroControl Freehand growth: https://ift.tt/gtsvzQP

Neuropace pioneered reimbursement: https://ift.tt/8w7Nfk4

Neuropace Responsive Neurostimulation System: https://ift.tt/95CwTEz

NeuroVista explanted: https://ift.tt/aRuKmhB

NeuroVista explants in popular media: https://ift.tt/f4CuLl9

Nia Therapeutics: https://ift.tt/zR2AJZg

NIH HORNET: https://ift.tt/NEzeBtn

Northstar Neuroscience: https://ift.tt/6HcNlWi

Northstar Neuroscience liquidated: https://ift.tt/JXjTqog

OpenMind Consortium: https://ift.tt/hcdoGBe

Second International BCI Meeting: https://ift.tt/ozyA50W

Second Sight struggles: https://ift.tt/sFkrqnm

Synchron: https://synchron.com

Synchron’s Stentrode: https://ift.tt/HzVpqMa

The company still lost money: https://ift.tt/sFkrqnm

The company was then liquidated: https://ift.tt/JXjTqog

The technology was acquired for US$200m by Medtronic: https://ift.tt/UFxBnjp

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schalk, G., Brunner, P., Allison, B.Z. et al. Translation of neurotechnologies. Nat Rev Bioeng (2024). https://ift.tt/hnaV0ym

Download citation

  • Accepted:

  • Published:

  • DOI: https://ift.tt/hnaV0ym

Adblock test (Why?)

No comments:

Post a Comment